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1. Introduction

Unparticle physics [1] refers to the phenomenology of a conformally invariant sector (CFT)

coupled to the Standard Model (SM). The main motivation for studying these scenarios at

the dawn of the LHC era is that unparticles can give rise to novel signals, both in production

and in virtual exchanges [1 – 4]. Here, we argue that these effects can be reproduced by a

few particles with specific masses and couplings.

That the existence of such a description is plausible can be seen right away from the

following two observations. First, a scalar operator with the smallest conformal dimension

allowed by unitarity describes a free particle. Continuity in the dimension then implies

that unparticle stuff with non-integer dimension close to the unitarity bound can also be

well approximated by one ordinary particle. On the other hand, it has been shown [5]

that the propagators of unparticles arise as a continuum limit of an infinite discrete set

of particles with a particular pattern of masses and residues. Therefore, it seems not

unreasonable to interpolate between the one-particle and infinite-particle approximations

and try with a finite number of particles. We shall make this idea explicit with the help

of Padé approximants. This is inspired by Migdal’s proposal of reconstructing low-energy

QCD large-Nc correlators from their UV value by means of Padé approximants and a

particular double limit [6]. We stress, nevertheless, that we do not take that limit here.

We concentrate on two-point functions, for simplicity, even though the CFT interac-

tions can be very relevant for collider phenomenology [7, 8]. Moreover, we study scalar

operators only. We consider first exactly conformal unparticles1 and then discuss the case

of unparticles with a mass gap. Because the functions we want to approximate have a

1Note however that the coupling to the SM breaks conformal invariance to some degree, mostly through

the vev of the Higgs [9, 10].
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branch cut for timelike Minkowskian momentum, we choose the Padé point (at which the

approximation is best) at an arbitary Euclidean momentum, that we identify with the UV

renormalization scale.

The paper is organized as follows. In section 2 we review basic properties of conformal

two-point functions (unparticle propagators), and find the corresponding Padé approxi-

mants. In section 3 we use these formal results to approximate unparticle stuff by a finite

set of particles. We argue that these particles can mimic characteristic unparticle signals,

and give explicit examples of this. In section 4 we study how the Padé approximants cap-

ture fundamental unparticle properties related to the value of the conformal dimension.

Section 5 is devoted to the case of unparticles with a mass gap. We conclude in section 6.

2. Padé approximants of unparticle propagators

Let us start reviewing some simple facts that will be important below. We use a mostly

minus Minkowski metric. Primary scalar operators have a conformal dimension d ≥ 1,

with d = 1 in a free theory. Their two-point function in position space is

〈Od(x)Od(0)〉 = Cd
1

(x2)d
. (2.1)

This is a bona fide distribution for d < 2. When d ≥ 2, however, it is too singular at x = 0.

The divergent local terms can be substracted to give a finite renormalized Fourier transform,

〈Od(p)Od(−p)〉ren = Ad
π(ν + 1)

sin(πν)
(−t)ν + Pν(t) ≡ ∆d(t), (2.2)

We have defined ν = d − 2 and t = p2/µ2, with µ the renormalization scale. Similarly,

all dimensional quantities that appear below are made dimensionless by writing them in

units of µ. For ν ≥ 0, Pν is a polynomial of degree [ν] (where [ν] is the greatest integer not

larger than ν) while for negative ν, Pν = 0. The relevance of the local terms Pν has been

emphasized and discussed in [11] (see also [12, 13] for their AdS/CFT dual interpretation).

In the following, we assume a particular substraction scheme and fix Pν such that the first

[ν] + 1 coefficients in the Taylor series of ∆d(t) about t = −1 vanish. We also normalize

to Ad = 1.

The renormalized two-point function ∆d(t) is the unparticle propagator. For the dis-

cussion below, let us also distinguish its non-local part ∆̃d = ∆d − Pν . When 1 < d < 2,

the propagator can be written in a Kählen-Leman spectral representation

∆d(t) =

∫ ∞

0

σd(w)

t − w
dw, (2.3)

with a spectral density

σd(w) = − 1

π
Im∆(w + iǫ)

= (ν + 1)wν . (2.4)

– 2 –
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Note that σd(w) gives also the phase factor for unparticle production [1]. For d ≥ 2 the

integral diverges, but we can use instead a substracted dispersion relation:

∆d(t) = (t + 1)[ν]+1

∫ ∞

0

σd(w)

(w + 1)[ν]+1

1

(t − w)
dw. (2.5)

Changing variables to u = (w + 1)−1, it reads

∆d(s − 1) = −s[ν]+1

∫ 1

0

W (u)

1 − su
du, (2.6)

where W (u) = u[ν]σd(u
−1−1) and we have introduced the variable s = t+1. By definition,

this means that ∆d(s − 1)/s[ν]+1 is a Stieltjes function of s with measure W (u)du.

Our plan is to study the Padé approximants of these unparticle propagators. Let us

first review the definition of Padé approximants to establish our notation. Given a function

f(s) analytic at s = 0, we define its Padé approximant as the ratio of two polynomials

RJ
N (s) and SJ

N of degrees N + J and N , respectively, such that its Taylor expansion at

s = 0 matches the one of f(s) up to terms of order s2N+J+1:

[N + J / N ]f (s) =
RJ

N (s)

SJ
N(s)

= f(s) + O(s2N+J+1) . (2.7)

We assume that SJ
N (0) 6= 0. We say that the Padé point is s = 0.

The Padé approximants of Stieltjes functions can be written in terms of orthogonal

polynomials (see [14] for a concise derivation and definitions):

[N − 1 / N ]f (s) =
s−1ρN (s−1)

πN (s−1)
. (2.8)

Here, πN and ρN are, respectively, orthogonal polynomials and (first) associated orthogonal

polynomials over the interval [0,1] with weight W (u). The associated polynomials ρN have

degree N − 1. This can be generalized to J > −1, and for our conformal propagators we

find [14]

Pd(s − 1) = [N + [ν] / N ]∆d
(s − 1) =

π(ν + 1)

sin(πν)

sJ P̂
(ν,[ν]−ν)
N (2−s

s )

P
(ν,[ν]−ν)
N (2−s

s )
, (2.9)

where P
(α,β)
N are Jacobi polynomials and P̂

(α,β)
N , their associated counterparts. In general

one should add to this formula a polynomial in s, but it vanishes in our case thanks to

the renormalization scheme we have chosen. It is important that we are using J = [ν] to

ensure the correct UV behaviour. Alternatively, we can write

Pd(t) =∆d(t) − (−1)N (ν + 1)
Γ(N + ν + 1)Γ(n + [ν] − ν + 1)

Γ(2n + [ν] + 2)

× (1 + t)N+[ν]+1
2F1

(

N + 1, N + ν + 1, 2N + [ν] + 2; t+1
t

)

tN+1P
(ν,[ν]−ν)
N

(

1−t
1+t

) . (2.10)

In this form the rational structure is far from obvious, but it has the advantage of using

only functions that are implemented in Mathematica.
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3. Unparticle vs. particle signals

The connection with orthogonal polynomials gives rise to nice properties of the Padé ap-

proximants of unparticle propagators:

1. All the poles ti are simple, real and positive.

2. The residues are positive as well.

3. When N → ∞ the Padé approximant point-like converges to the exact propagator

everywhere except along the positive real line. The rate of convergence is geometric

for |t + 1| < 1.

The first property follows simply from the facts that the zeros of orthogonal polynomials

on a real interval are simple and belong to the interval, and that they are different from

the zeros of the corresponding associated polynomials. The second one follows from the

interlacing property of the zeros of orthogonal and associated orthogonal polynomials [15],

which imply that the sign changes of the Padé when a pole is crossed are neutralized by

sign changes between poles, arising from the numerator. The proof of the third property

is less straightforward and we do not give it here, but refer again the interested reader to

ref. [14]. (See also [16] for algebraic proofs of these properties based on Padé determinants).

The first two properties are precisely what we need for a particle interpretation of

the Padé approximants. Indeed, for 1 < d < 2, Pd can be written as a sum of ordinary

one-particle propagators with positive masses and residues. When d ≥ 2, on the other

hand, we need to use higher degrees in the numerators and Pd is equal to a sum of one-

particle propagators plus local terms. These local terms can always be put to zero by a

change of renormalization scheme, which depends not only on the dimension but also on

the particular Padé approximant. At any rate, the local terms do not contribute to the

spectral density. The third property ensures a fast convergence in the Euclidean region,

but not for timelike Minkowskian momentum. In fact, the spectral function of the Padé

approximants is a sum of delta functions. Nevertheless, the approximation can be good

also for amplitudes in the Minkowskian region, if we take two effects into account.

First, in real experiments the energy resolution of the detectors is finite. This means

that the energy distribution of cross sections is convoluted with a function of the energy,

representing the detector response with a resolution ∆
√

t ∼ Γ(
√

t). For small Γ/
√

t, this

function should approach a delta function. Changing variables from
√

t to t, we can

approximately reproduce this effect by a convolution in t of the spectral density with a

distribution ρΛ, with an uncertainty ∆t ∼ Λ(t) ∼
√

tΓ(
√

t):

σd,Λ(t) =

∫ ∞

0
σd(w)ρΛ(w, t)dw. (3.1)

Let us stick to 1 < d < 2 and take

ρΛ(w, t) =
1

π

Λ

(w − t)2 + Λ2
. (3.2)
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This is a representation of the delta function, so σd,Λ → σd when Λ → 0. We want however

to keep Λ > 0 finite. Using

ρΛ(w, t) = − 1

π
Im

1

t − w + iΛ
(3.3)

and analytically continuing eq. (2.3), we find

σd,Λ(t) = − 1

π
Im∆(t + iΛ). (3.4)

Therefore, a finite resolution for unparticle (or particle) production can be implemented

by evaluating the propagator at complex values.2 These are good news for us, as the Padé

approximants converge uniformly if t is kept off the positive real line. This sort of argument

is standard in discussions of quark-hadron duality, and can be generalized to larger values

of d. We also note that a finite imaginary part in the argument of the propagator smooths

down the behaviour of its real part too. However, in the virtual interference experiments

the energy uncertainty is usually that of the beams, and thus smaller.

The second effect that smears the Padé propagators is the fact that the coupling of the

CFT to the SM gives corrections to the exactly conformal propagator. In particular, it gen-

erates an extra imaginary part, directly related to unparticle decay into SM particles [17].

In our description, this means that we should add finite widths to the Padé particles. This

affects both the virtual exchange of unparticles and their production. Fortunately, this

effect is again taken into account if we evaluate the propagator at momenta with a finite

positive imaginary part.

To get a feeling of the goodness of the approximation, it is best to study explicit

examples. For simplicity, we assume that Λ is constant in the plots of the propagators

below. In figure 1 we plot the exact unparticle propagator with d = 4/3 and the Padé

approximants P4/3 with N = 3, N = 7 and N = 15, in terms of t and with a fixed Λ = 0.1.

The values of the squared masses and residues of the seven particles for N = 7 are given

in table 1. The fact that the number of masses above and below µ differ at most by 1 is

general.

We see in the plots that the approximation is very accurate in the Euclidean region,

even for a number of particles as small as N = 3. This would hold also for vanishing

Λ. For Minkowskian timelike momentum, the Padé propagator oscillates around the exact

value. The accuracy in this region is better for small values of t/Λ. As expected, larger

values of t/Λ are well approximated when N increases. We also see that, as one could

have guessed, the approximation works well in the region where Λ is greater than the mass

spacings of the Padé particles. The individual particles cannot be resolved in this region,

2Observe that, in practice, it is not the energy of the unparticles which is measured, but rather the

one of the jets and leptons produced together with them (or from their decays). The reconstruction of

the (un)particles in the relevant processes, taking into account efficiencies, hadronization uncertainties and

other effects, introduces a further smearing with a different energy dependence. The encoding of these

limitations into σd,Λ is necessarily a rough approximation to effects that should be calculated on a process

by process basis.
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Figure 1: Real (left) and minus imaginary (right) parts of the unparticle propagator (red, solid)

for d = 4/3 and the corresponding Padé approximants P4/3 with N = 3 (green, short dashes),

N = 7 (purple, medium dashes) and N = 15 (blue, long dashes). We take Λ = 0.1.

Mass2 Residue

0.0079221 0.352052

0.107119 0.241402

0.361388 0.241640

0.924753 0.291822

2.32400 0.431874

7.21395 0.882060

55.5609 4.26730

Table 1: Values of the squared masses (in units of µ2) and residues of the seven particles in P4/3

for N = 7.

so their masses and couplings cannot be determined. On the other hand, the convergence

is slower for larger values of d.

The behaviour of the propagator translates directly into physical observables. As an

instance, let us follow ref. [1] and consider the top decaying into an up quark and an

unparticle via a derivative coupling

λūγµ(1 − γ5)t∂µOd + h.c. (3.5)

The normalized energy distribution of the outgoing up quark is displayed in figure 2 for

unparticle stuff and for our particle approximation. We consider the ideal situation in

which the unparticle and the associated Padé particles are stable and have no width. Finite

widths would just make more difficult to distinguish both possibilities. This time, rather

than going to complex energies, we have performed directly a gaussian smearing of the

energy distribution of the up quark, using a constant width.3 The conformal dimension of

the operator in the left and right plots are, respectively, d = 4/3 and d = 9/8. We see that

the approximation is worse when the dimension increases. Observe that in this process,

and for not too big dimensions, the approximation is much more accurate at the peak than

3The value of the width used for the plot, Γ = 0.05mt ≈ 8.6GeV, is somewhat above 5.3 GeV, the

performance-goal resolution of the LHC hadronic calorimeters at energies around 85 GeV [18], but is very

optimistic when the other effects mentioned in the footnote 2 are taken into account.
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Figure 2: Normalized energy distribution of the up quark in t → uOd decay (red, solid) for

d = 4/3 (left) and d = 9/4 (right), and the corresponding distributions for t → uφi decay into Padé

particles φi, with N = 7 (green, short dashes) and N = 17 (blue, long dashes). We choose the

renormalization point µ = mt. The distributions are smeared with a gaussian of width 0.05mt.
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Figure 3: Real (left) and minus imaginary (right) parts of the unparticle propagator (red, solid)

for d = 4/3 and the corresponding Padé approximants P4/3 with N = 2 (green, short dashes) and

N = 3 (blue, long dashes). The Padé point is in this case t = i, and we have chosen Λ = 0.05.

in the tail on the left. Thus, in the presence of backgrounds it can be very difficult to

distinguish the production of unparticles from the production of the Padé particles, even

for quite small N .

We finish this section with a generalization of our approach. The reality properties of

the Padé approximants of Stieltjes functions do not hold any longer if we choose a complex

Padé point (instead of the real point t = −1). Even if the particle interpretation is lost

in this case, it is interesting to observe that the approximation greatly improves in the

physical region. We give an example of this in figure 3. Notice that we are using a Λ

smaller than before. It is remarkable that just three unphysical particles are sufficient to

give an almost perfect approximation to the unpartical propagator at any momentum.

4. Unparticle properties from the particle perspective

In this section we show that the Padé approximants reproduce and help to understand

some basic properties of the unparticle propagators. These properties are related to the

behaviour of the propagators when d approaches or crosses integer values. We carry out a

numerical analysis, which should be sufficient to illustrate the general features.
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Consider first the limit d → 1. Taking N=6, P1.01(t) has a very light particle with

mass m2/µ2 = 0.00028 and residue 0.968, whereas the other five particles have residues

smaller than 0.027. So, we see explicitly how one particle in the Padé smoothly becomes

massless with residue 1 in the Padé, while the other ones decouple. If we cross the unitarity

limit, d = 1, the original function is not Stieltjes any more, due to its IR behaviour. It

can be seen explicitly that the light particle becomes tachyonic and the other ones get

negative residues, small in absolute value if we stay near d = 1. So, the Padé approximants

also reflect the pathologies of the original theory, and make explicit the ghosts below the

unitarity bound. Moreover, it is interesting to see that this loss of unitarity comes about

smoothly as we cross the limit d = 1, and that it is small right below this limit.

Next, let us study what happens when we go from UV finite unparticles with 1 < d < 2

to UV divergent unparticles with 2 ≤ d < 3. Consider the [9/10] approximant P1.99. It has

nine particles with masses below 5.13µ, and one with m2/µ2 = 9950 and residue 944146.

For energies of order µ, this particle just provides a constant term equal to 94.9. Let us

compare this with the [9/10] approximant to the unsubstracted propagator ∆̃2.01 (which is

not Stieltjes). This has nine particles with masses and residues very similar to the previous

ones. On the other hand, the heavy particle is tachyonic now, with m2/µ2 = −10051

and residue 1059380. Hence, there is an instability, but if we are not far from d = 2, it is

located at large (spacelike) momenta. For small momentum, the tachyon behaves as a local

constant term equal to -105.403. That the local term is that different from the previous one

comes to no surprise, for the original unsubstracted propagator is also discontinuous as we

cross d = 2. In fact, it would be more appropriate to compare the substracted propagator

with d > 2, ∆d, to an oversubstracted propagator with d < 2, ∆̄d(t) = ∆d(t) − ∆d(−1).

These propagators are analytic continuations of each other. Of course, as we have seen

in general before, the correct approach is to build the [10/10] approximant to ∆2.01. This

introduces an explicit constant term, 6.092, and rearranges all the masses and residues to

approximate the original function with non-tachyonic particles (with masses below 8.72µ).

Moreover, if we compare it with the [10/10] approximant to ∆̄d with d < 2, we do find a

continuous evolution.

Summarizing, as we approach the limit in d for a UV finite unparticle propagator,

one particle of the [N − 1 / N ] Padé approximant goes to infinity (without decoupling).

After crossing this limit, it comes back from minus infinity to become a tachyon. This

instability comes from the bad ultra-high-energy behaviour of the propagator (remember

that we have performed the substraction at a finite renormalization point), and can be

avoided introducing a constant term. This is done automatically by the [N/N ] Padé. The

same mechanism takes place every time an integer dimension d ≥ 3 is crossed, when the

correct Padé [N + [ν] / N ] is employed. On the other hand, if we insisted in using the

[N − 1 / N ] Padé for d ≥ 3, complex masses and residues would appear.4

4This is closely related to the behaviour of Padé approximants to non-Stieltjes functions, studied in [19]

in the framework of large-N QCD.
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Figure 4: Real (left) and minus imaginary (right) parts of the unparticle propagator (red, solid)

for d = 4/3 and mass gap η = 1/3, and the corresponding Padé approximants P4/3 with N = 3

(green, short dashes), N = 7 (purple, medium dashes) and N = 15 (blue, long dashes). The Padé

point is t = 0, and Λ = 0.1.

5. Unparticles with mass gap

Everything so far can be generalized to unparticles with a mass gap. These arise when

conformal invariance is broken in a very soft way that introduces a mass gap but preserves

a continuum above it. For simplicity, we consider the particular propagator introduced

in [9]:

∆µ
d(t) =

π(ν + 1)

sin(πν)
(−t + η)ν + Pν(t), (5.1)

with η = M2/µ2 and M the mass gap. The spectral density is

ση
d(w) = (ν + 1) θ(w − η) (w − η)ν . (5.2)

It is clear that all the previous results still hold in this case if we choose the Padé point

t = η−1. It follows that the approximations will be extremely accurate below the threshold

for unparticle production. It is also possible in the presence of a mass gap to choose the

Padé point t = 0. As pointed out in [20], these Padé approximants can be obtained in

priciple from a chiral expansion of the theory. As an example, we plot in figure 4 the

unparticle propagator and its [6/7] Padé approximant, at point t = 0, for d = 4/3 and

η = 1/3. We choose Λ = 0.1.

6. Conclusions

We have shown that unparticle stuff with 1 ≤ d < 2 can be well approximated by a

relatively small number of ordinary particles, with specific couplings and masses. This can

be achieved in a systematic way by means of Padé approximants. When d ≥ 2, local terms

are necessary in addition to the particle propagators. We conclude that a finite number

of particles can give rise to the same production and interference signals as unparticles,

once the limitations of experiments and the decay back into SM particles are taken into

account.5 Intuitively, this is possible because these effects prevent the individual particles

5We do not claim that Padé approximants give the best particle approximation to unparticle signals.

For instance, tuning the widths of the individual particles, independently of the unparticle decay width,

can improve the approximation.
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from being resolved. We should remark, nevertheless, that such particles have a very

particular pattern of masses and couplings, with no raison d’être without the principle

of conformal invariance. It would be interesting to apply these ideas to specific processes

including the SM backgrounds.

An alternative (exact) description of unparticles in terms of just one particle is known

for 1 ≤ d < 2: a particle propagating in AdS space [13]. This follows from the AdS/CFT

correspondence in the special case in which two alternative quantizations of the AdS free

field exist [21]. Unparticles with mass gap can be described by special (asymptotically

AdS) geometries [13, 22, 23]. Similarly, the Padé approximants in this paper can be given

a higher-dimensional interpretation. Indeed, A. Falkowski and the author have shown

in [14] that, for Stieltjes functions, the Padé numerators and denominators obey a sec-

ond order difference equation. When N → ∞, it becomes a field equation of motion in

AdS.6 If we keep N finite, the Padé approximants are dual to particular deconstruction

setups, described in [14]. Therefore, from the holographic point of view, our approximation

with a finite number of particles (KK modes) corresponds to both a discretization and a

compactification of AdS space [25], in contrast to the compactification proposed in [5].
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